ADENEAS Public Workshop 22 February 2023

Presenter: Kees Nuyten - FE

Contributors: The Team

Advanced Data and power Electrical NEtwork Architectures and Systems

01010100101

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.

The ADENEAS workshop is an interdisciplinary collaboration to expand, discuss and network on different topics related to H-2020 call <u>MG-3-4-2020</u>, part of 'Smart, green and integrated transport'

Innovative electric network architectures and systems, optimising global energy, electrical power, data and communication for aviation

- You can reach us at
 - Kees Nuyten <u>Kees.Nuyten@Fokker.com</u>
 - Project Office <u>adeneas-coordination@eurtd.com</u>

Participants

Confirmed

- A.D.S.E.
- Airbus
- ARTTIC
- Collins
- EASA
- Evektor
- GKN Fokker Elmo
- KLM
- NLR
- Ohmic
- plc-tec
- Synano
- TU/e
- University of Nottingham

Invited

- Benchmark
- Bombardier
- Brookx
- Diehl Aerospace
- DLR
- Embraer
- Honeywell
- ONERA
- MGM Compro
- SAZ Aerospace
- University of BRNO
- University of Hamburg

Time		Tonic							
Start	End	горіс							
10:00	10:05	Welcome and introduction Presenter: Kees Nuyten, Coordinator of ADENEAS – Fokker Elmo							
		Project Presentation							
11:05	10:25	Project introduction Presenter: Kees Nuyten – Fokker Elmo							
		Work Package (WP) presentations							
10:25	10:40	WP2 – Wireless Technologies Presenter: Sonia Heemstra de Groot – Eindhoven University of Technology (TU/e)							
10:40	10:55	WP3 – Power Line Communications Presenter: Stephen Dominiak – plc-tec							
10:55	11:10	WP4 – Modular Distributed Power Presenter: Diarmaid Hogan – Collins Aerospace							
11:10	11:25	Coffee Break							
11:25	11:40	WP5 – Cooling Solutions Presenter: Johannes van Es – NLR							
11:40	11:55	WP6 – Architectures & Topologies Presenters: Kees Nuyten – Fokker Elmo; Diarmaid Hogan – Collins Aerospace							
11:55	12:10	WP7 – Technology impact Evaluation, Assessment & Optimization Presenter: Roland Furmanek – Evektor							
12:10	12:20	Any other business							
12:20	12:30	Summary of status and feedback							
12:30	13:30	Lunch Break							
13:30	14:00	Round table discussion							
		Related research project presentations							
14:00	14:30	ORCHESTRA project							
14:30	15:00	3CCAR project							
15:00	15:15	Ramp up							
15:15	-	End of the Public Workshop							

ADENEAS Public Workshop 22 February 2023

Presenter: Kees Nuyten (Fokker Elmo)

Project Introduction

Advanced Data and power Electrical NEtwork Architectures and Systems

01010100101

ADENEAS

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.

Safe, light, self-configuring, autonomous and modular power and data distribution network that is scalable to all aircraft sizes

Hybrid data network envisioned

- No single technology outperforms others under all circumstances weight wise
 - Electrical cable for short distances (<1 m)
 - Wireless communication for wireless sensors
 - Electrical wire powered device do not prefer PLC or wireless communication in advance
- Data network architecture behavior adds complexity to this simplified approach
- Modular power distribution will increase power equipment deployment and reduce weight
 - Power distribution network adds complexity to this simplified approach
 - Novel cooling system will reduce system weight

Project Vision Validation Deliver a significant contribution to sustainability

- Weight reduction WAS an affordability driver (reduced fuel burn costs of ~1 k€/kg/aircraft lifecycle)
- Weight reduction IS a sustainability driver (reduced emissions by reduced fuel burn and enabler for More Electric and Connected Aircraft – MECA, reduced material consumption)
- Targeted weight reduction 400 kg for a 100-seater
 - Similar to 4 or 5 passengers
 - Weight reduction estimates vary but seems to be not overoptimistic
 - Emission reduction is TBD but substantial
 - At system level in scope ~20%
- Scalable solutions to maximize impact toward investor in climate and business
- Challenges
 - Complexity of the technology and the stakeholder landscape
 - Acceptance of initial increased costs leading to long term reduced costs by increased sustainability

Total EU contribution: 4.1 M€ Start date: 1 February 2021 End date: 1 February 2024

Key milestones

Scalable and robust PLC

Ultra-reliable wireless communication enablers

Evaluate scalable solutions developed for

UAM

Cargo Aircraft

Rotorcraft

- More Electric and Connected Aircraft face ongoing trend of increase electrical wiring and power equipment weight
 - Current wiring weight 1200 kg for A220 / 5700 kg for A380
- ADENEAS will find and develop solutions to
 - Replace electrical wires by ultra-reliable substitutes for communication
 - Improve power network efficiency and effectiveness (including cooling solutions)

OBJ1: Develop enabling technologies for intra-aircraft data communication and power network

- Ultra-reliable wireless communication enablers
- Models for in-aircraft antenna to antenna signal transfer
- Scalable and robust Power Line Communication (PLC)
- Novel Conductor Concepts (NCC)

OBJ2: Develop new architecture concepts for advanced data and power networks

- Design criteria and architectures for integration of different communication technologies
- Multiplexed architectures for power distribution with PHM
- Optimized architectures for cabin power networks with high efficiency convertors

OBJ3: Develop advanced AI-based design tools which can facilitate the processing of new system requirements and architectures

Tools and methods for architecture optimization and complexity reduction

OBJ4: Develop a cooling system using a nano-fluid-based additive

- A 2-phase Mechanically Pumped Loop (MPL) cooling system with nano-fluids
- Nano-fluids for single and 2-phase cooling

OBJ5:Demonstrate at TRL3 to TRL5

- A Ground-Based Demonstrator (GBD)
- A flying testbed EVE Sportstar EPOS+ (Electric Powered Small aircraft)

OBJ6: Ensure the uptake of the ADENEAS technologies beyond the end of the project

- Standardization roadmap
- Business plan (technology roadmap)

Project introduction Status

- Overview
 - Year 1: Context and size of the challenge explored defined and understood
 - Year 2: Developments took off, added focus to standardization
 - Year 3: Continue developments and evaluate, prepare exploitation plan
- Operation
 - Comparing status last year Public Workshop with current status
 - Vision and objectives are stable
 - Work packages show significant progress all together quite well according plan
 - Awareness of need for standardization (interoperability and requirements) increased
 - Successor projects defined / took off (RHIADA, HECATE, NGF)

							we ar	e here			
	Year 1			Yeo	ar 2	-	Year 3				
Explore											
Develop											
Demonstrate											
Evaluate											

WP Achievements, Progress and Outlook

Adeneas

- WP1 Requirements and System Specification
 - = Version 1 finished (D1.1/1.2)
 - + Extensions towards PHM
 - > Additional review upcoming IAB session
- WP2 Wireless technologies

Antenna propagation

- = Test campaign Fokker 100, (rapid) models developed
- + Extension with relevant aircraft geometry details
- > Finish at the appropriate level of fidelity
- Wireless communication reliability enhancements
 - = Extensive survey of enablers performed
 - + Development selected enablers, test setup
 - > Test and evaluation

Software Defined Radio (SDR)

- = Development cognitive radio techniques
- + SDR first prototype design
- > First prototype IC, prototype 2, test and evaluate
- WP3 Power Line Communications
 - = EMC tests performed
 - = Prototypes PLC-modems +network configuration tool
 - + Tests setup preparation
 - > Test and evaluate PLC + with novel conductor concept

D1.1 - Systems Requirements and Spec D1.2 - Reference Case Spec

Grant agreement number:	101006728	Project start date:	1 February 2021
Project title:	ADENEAS	Duration:	36 months

WP Achievements, Progress and Outlook

- WP4 Modular Distributed Power
 - = Power network PHM viability analysis for multiplexed architectures
 - = Nano-grid power distribution network control designed + simulated
 - = Trade-off for power convertor concepts performed and 3 selected
 - + Development selected power convertor concepts
 - > Test and evaluate
- WP5 Cooling Solutions
 - = 2-phase MPL cooling system designed + built
 - = Test methods for nano-fluids developed
 - + Test setup 2-phase MPL
 - > Test and evaluate
- WP6 Architectures and Topologies

Power Network

- = Power network topology exploration tool
- + tools and methods for power network optimization
- > Assessment of achievable weight gain
- Data network design automation with AI
 - = Automatic position gateways for wireless communication
 - + Extension set of design constraints and PLC

> Tool and method to develop and trade-off architectural concepts Novel Conductor Concepts:

- = Concepts define, traded off and 2 selected, SE-model
- + Production test samples
- > Test and evaluation

©ADENEAS

WP Achievements, Progress and Outlook

- WP6 Architectures and Topologies reference cases
 - = Extended reference cases
 - > Case for commuter aircraft / UAM
- WP7 Technology Impact Evaluation, Assessment & Optimization
 - = Inventory of solutions to be evaluated provided with means of TRL evaluation
 - = Aircraft Performance Model (APM)
 - = Weight gain estimation made based upon link level
 - + Test setups for 'complex demonstrators', APM
 - > APM based impact evaluation
- WP8 Management, Dissemination and Exploitation
 - + EUROCAE/RTCA WAIC standardization group
 - > WAIC requirements, MOPS and MASPS
 - > Additional guidance for EMC, safety and security to prepare for
 - > Exploitation plan including 3 successor projects

ADEINEAS - Signal properties review - Estimate	9-11-2022 15:21	IVIICTOSOTT EXCEL WORK	964 KB
ADENEAS work file 2022-12-01	1-12-2022 14:23	Microsoft Excel Macr	117.378 KB
Baco Caso FIGS 22-00-21	Q_11_2022 15.44	Microsoft Evcol Work	50 KB

ADENEAS Public Workshop 22 February 2023

Presenter: Sonia Heemstra de Groot (TU/e)

Contributors: TU/e, NLR, Fokker Elmo

WP2:Wireless Technologies

Advanced Data and power Electrical NEtwork Architectures and Systems

01010100101

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.

Aiming at scalable and future-proof wireless communication techniques that can offer at least the same degree of robustness, safety and security as wired solutions

Challenges:

- Mission criticality
- Wireless channel
- Dynamic environment
- Low transmit power levels and limited frequency bands

Wireless intra-aircraft communication network concept*

*Source: P. Park, P. Di Marco, J. Nah, and C. Fischione, "Wireless avionics intra-communications: A survey of benefits, challenges, and solutions," IEEE Internet of Things Journal, 2020.

©ADENEAS

WP2 timeline

					20)21					2022					20)23			2024	
			Q1	1	Q2	i	Q3		Q4	Q1	Q2	Q3		Q4	Q1		Q2		Q3	Q4	Q1
			M1 M	2 M3	M4 M5	M6	M7 M8	М9	M10 M11	M12 M13 M1	4 M 15 M 16 M	17M18M19	M20N	/121 M22 M23	M24 M25 M	M26 N	M27 M28 M29	9M30	M31M32M3	3 M34 M35	M36
		Lead		ł		ł		ļ					ł					1			
WP2	Wireless Technologies	TU/e		-		!		!				1	 					!			
T2.1	Ultra-reliable wireless communications	TU/e									D2.1								D2.4		
T2.2	SDR-based cognitive radio techniques	TU/e								4	D2.2								D2.5		
T2.3	EMC, antennas and propagation	NLR									D2.3 an	d D2.8							D2.6		
T2.4	Experimental evaluation	TU/e		i		i		ļ											D2.9		D 2.7
				i		i		ł								i		i			

Task 2.1 Ultra-reliable wireless communications

Objectives:

 Research and develop techniques for high robustness to failure, interference and security attacks, very high availability and autonomous self-healing capabilities

Approach

- Reliability at several layers of the protocol stack
- Evaluation of candidate wireless standards
- Evaluation of some diversity techniques by analysis, simulation and implementation in COTS devices.

Techniques	Illustration	Example
Spatial	¥ ▼ ▼	MIMO
Frequency	Yfi Y	OFDM modulation
Time	γ coding γ	Channel coding
Polarization	³ X ³	
Channel	Y path2 Y	Combining techniques

Physical layer of diversity techniques

Main achievements & technical highlights (1):

Comparative analysis of reliability of IEEE802.15.4 protocols

(presented at 42nd WIC Symposium on Information Theory and Signal Processing in the Benelux, June 1-2 20-2022 Louvain, Belgium)

©ADENEAS

シン Adeneas

Adeneas

Main achievements & technical highlights (2):

- Implementation of path diversity techniques on top of IEEE 802.15.4 Time Slotted Channel Hopping (TSCH)
- TSCH and RPL are protocols designed for industrial IoT
 - Energy efficiency
 - Guaranteed channel access
 - Latency constraints
 - Channel diversity-> multi-path/fading mitigation

T2.1: Ultra-reliable wireless communications

<u>Main achievements & technical</u> <u>highlights (3):</u>

- Experimental set up complemented with network simulations
- Contiki-ng OS and Cooja simulator
- Path diversity: Several implementation options.
- Working on scheduling/priority techniques for different traffic classes
- Multicast techniques for resource efficient upstream traffic diversity
- Visualization of results

IEEE802.15.4 wireless radio modules

Example of Cooja simulator with 5 nodes and dual gateway diversity

Objectives

Investigation of radio techniques to achieve objectives of upgradability, flexibility, security and interoperability at the physical layer

Approach

Adaptive and software defined hardware, that can reduce dynamic range as early in the in the processing chain as possible

Task 2.2 SDR-based cognitive radio techniques

Main achievements & technical highlights (1):

- Carrying out measurements at the Aircraft Maintenance and Training School full week 1 (together with T2.3)
 - Measurement of the frequency response and power Delay Profile using Fieldfox VNA
 - Angle of arrival
 - Measure phase and amplitude in an array in the airplane

- Analog pre-filtering for wideband interference suppression
 - Wideband beamforming using FIR equalization
 - Eliminate interference early in the transceiver and reduce dynamic range requitements at the ADC

رہے ہے۔ Adeneas

©ADENEAS

T2.2: SDR-based cognitive radio techniques

Main achievements & technical highlights (2):

- Analysis of optimal DT filter topologies:
- Filter performance in terms of filter length:
 - Attenuation of a Null steered signal
 - Flatness of the filter gain
 - Multiple Hoogerheide scenarios
- Filter performs well for reasonable filter length:
 - 12dB (2 bits) attenuation for 32 taps
 - Gain standard deviation of ~1dB/~12% for 32 taps
- This filter will be implemented as a bank of capacitors, that stores analog samples, which can then be combined at the output at a programmed delay
- Translation to actual electronics:
 - Circuit linearity/power consumption tradeoff
 - System level challenges for electronics

T2.2: SDR-based cognitive radio techniques

Main achievements & technical highlights (3):

AFIR hardware implementation

 Each AFIR filter has 4 paths for in phase and quadrature signals

Expected tape out 20 March

- The main component is a large capacitor bank, that stores and averages input samples with different delays
- This bank has three switches:
 - Sign switches that are used for charge sharing
 - Top plate switches that are used for programming the weight
 - Sample switches that are used to sample the input signal

Task 2.3 EMC, antennas and propagation

Objectives

 Perform EMC and propagation analysis for ultra-reliable intra-aircraft wireless communications

©ADENEAS

Approach

- Compatibility (EMC&RFI) analysis between wireless networks and other aircraft systems (e.g., challenge with RA)
- Propagation measurements
- Simulation of propagation paths in the aircraft and minimisation of multipaths problems
- Development of (integrated) antennas that are suitable for wireless networks on-board aircraft

26

Task 2.3 EMC, antennas and propagation

Main achievements & technical highlights (1):

- EIRP and propagation measurements of a Fokker 100
 - EIRP measurement
 - Effect of WAIC emitter on radio altimeter
 - Propagation measurements in cabin and front cargo bay
 - Isolation measurements

Adeneas

	Cabin	CF	CA	Cockpit	NLG	MLG
Cabin		-36	-34	-36	-69	-58
)F	-36		-57		-81	-41
CA A	-34	-57			-84	-61
Cockpit	-36					
NLG	-69	-81	-84			
ЛLG	-58	-41	-61			

Simulated path loss for the T100 model, horizontal plane

Propagation simulations

- Use fuselage 3D model for propagation simulations
 - Adapting the 3D model: rework mesh, add chairs/people inside, material electromagnetic properties
- Substantial reduction of simulation time (from days to minutes)

Effect of aircraft fuselage on EIRP of a single transmitter

©ADENEAS

@<u>+</u>// ------)

Connectivity between gateway and nodes

Gateway and equipment locations modified from WP6 to fit the T100 model

- "connected" equipment
 - should communicate with gateway and
- "interfering" equipment
 - Belongs to different gateway, but still receives power from current gateway.

Gateway locations in the T100 model

Task 2.4 Experimental evaluation

Objective

 Integration ,validation and evaluation of a representative set of solutions developed in T2.1, T2.2, and T2.3 in experimental set up

Approach

- Proof of concepts test bench
 - Representative subset of solutions
 - Complemented with simulations
 - Verify design
 - Assess performance
- Reliability model for wireless networks

Top event: The systems supporting communication network

cannot support the required Quality of Service.

System EIS etwork fails

failure

Actuator fialure

failure

The physical link fails

(electrical or mechanical)

Main achievements & technical highlights (1):

Reliability model for wireless networks

- Fault-tree analysis modified to suit ADENEAS needs (PLC and expansion to wireless)
 - Fault Hazard Analysis (FHA) to the reference case (Fuel Inert Gas System)

Ozone

Converte

©ADENEAS

کر Adeneas

Main achievements & technical highlights (2):

First steps on experimental evaluation and demonstrator development

- Selection of 802.15.4e (TSCH) based network to model the A220 FIGS
 - Based on and combination of relevant reliability mitigation techniques
- Mapping Fuel Inert Gas System to the ground-based demonstrator network

©ADENEAS

ADENEAS Public Workshop 22 February 2023

WP3 Power Line Communications

Advanced Data and power Electrical NEtwork Architectures and Systems

01010100101

ADENEAS

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.

Presenter: Stephen Dominiak plc-tec

Power Line Communications (PLC)

- PLC Concept
 - Data transmission network completely removed
 - Single connector for power + data
 - Data transmission independent of the underlying power signal
 - Communications protocol designed for transmission in "harsh" environments
- PLC Advantages
 - Reduced wiring weight and volume
 - Reduced complexity which simplifies design
 - Reduced installation effort
 - Reduced maintenance

ADENEAS WP3 PLC

- Develop a scalable and robust data bus solution for communicating over the aircraft power distribution network using the PLC technology
- Develop a solution that can be applied to different aircraft sizes and a wide range of systems

Architecture

WP3 Power Line Communications objectives

Optimize the PLC technology in terms of EMC robustness and verify the EMC compliance

Develop a PLC network configuration concept and configuration tool for supporting an easy deployment of a PLC data bus to a wide range of aircraft systems

Define a standardized PLC data interface to aircraft systems such that PLC can deployed in combination with wireless and other wired data networks

Optimize the PLC coupling module and test the use of PLC on novel power distribution conductor concepts

WP3 PLC Timeline

Lead

NLR

plc-tec

WP3 Power Line Communications

- PLC EMC T3.1
- T3.2 PLC Network Configuration Concept and Tool plc-tec
- PLC Interface Standardization T3.3
- PLC Testing on Novel Power Distrib. Cond. Concepts plc-tec T3.4

©ADENEAS

<u>____</u> ADENEAS
T3.1: PLC EMC - Overview

- PLC EMC measurements performed at NLR
 - March May 2022
- Measurements:
 - Conducted Susceptibility
 - Conducted Emissions
 - Radiated Emissions
 - Crosstalk
- Additionally, crosstalk simulations have been performed
- Much work has been done to define test setups for applying ED-14G/DO-160 to PLC

T3.1: PLC EMC – Wiring Architectures

- The impact of different aircraft wiring architectures on EMC was investigated
- Single wire with ground return typical power cabling for DC power
- Wire pair typical power cabling for AC power
- Bifilar wire with ground return replacement of the single wires by two cores with are in common-mode for power while PLC is used in differential-mode

ADENEAS Public Workshop – 22 February 2023

WP3 – T3.1 PLC EMC – Summary EMC Measurements

- Measurements performed on different wiring architectures:
 - Conducted Susceptibility
 - Conducted Emissions
 - Radiated Emissions
- Test result summary

	STP	UTP	UUP	Bifilar (NCC)	SW
Conducted Susceptibility	PASS (up to Cat Y)	PASS (up to Cat W)	PASS (up to Cat W)	PASS (up to Cat W)	FAIL
Conducted Emissions	PASS (cat L/M/H powerline)	PASS ¹ (cat L/M/H powerline)	PASS ¹ (cat L/M/H powerline)	PASS (cat L/M/H powerline)	FAIL
Radiated Emissions	CONDITIONAL ²	CONDITIONAL ²	CONDITIONAL ²	PASS (cat M)	FAIL

- 1) Emissions peak around 40MHz has been attributed to cable resonances through simulations and additional measurements results to be published
- 2) Certain frequencies slightly (ca. 5dB) above the limits

Crosstalk

- Crosstalk between multiple PLC systems within a single bundle
 - Goal: determine the number of PLC signals that can be applied in a single bundle
 - Conclusions:
 - PLC in the single wire configuration will be disturbed already with more than 2 culprit systems
 - PLC with other cabling types will not disturb itself even in the worst-case situation (single victim surrounded by 6 culprit signals)
- Crosstalk between PLC signals and other cables in the same bundle such as power signals, data signal and sensitive signals
 - Goal: Determine how PLC and other systems can co-exist in a single bundle
 - Conclusions:
 - Data signals are not interfered by PLC signals for wire-pair wiring (single-wire requires twisting of the data signal)
 - Power signals do not interfere with PLC signals for all configurations
 - Shielded high-speed signals (ARINC 664) do not interfere with PLC signals for all configurations

T3.2: PLC Network Configuration Concept and Tool

- PLC Network Configuration Concept and Tool
 - A concept for remote configuration of the PLC network has been designed
 - Based on the exchange of Ethernet frames for the remote configuration/management of all PLC modems
 - Supports PLC multi-channel configuration
- PLC Management Tool in ADENEAS
 - For the ADENEAS project, the PLUS Management Device (PMD) will be realized on a MOXA UC-8112-LX embedded PC with Linux OS
 - A web-based user interface for the PLC network configuration has been developed

Adeneas

T3.4: PLC Testing on NCC

PLC modem prototypes

- plc-tec has developed a PLC solution dedicated for safetycritical applications
 - Power Line data bUS (PLUS)
- Next generation PLC modem prototypes (PLUS-V2) have been developed for ADENEAS demonstrators
 - Flying demonstrator on Evektor EPOS platform
 - Ground-based demonstrator with power components
- Novel conductor concept testing
 - Avionics wiring testbench with bifilar wiring harness has been constructed
 - Testing with PLC to begin April 2023

PLUS-V2 Housing	Aluminum housing Screw mount with mounting feet Dimensions (incl. mounting feet): 109 mm (L) x 78 mm (W) x 43.2 mm (H)
PLUS-V2 Weight	Complete PLUS-V2 Prototype: 342g PLUS-V2 PCB Only: 70g
PLUS-V2 Power Supply	Input voltage: 9-36VDC Power consumption: 7W nominal Power supply input available on connector X1 Protection: 1.5kV isolated supply
Data Connectors	Data Connector (X1) 30-pin Deutsch DMC-M DMC-LPR 30-23 P
Ethernet	ETH 100BASE-TX
CAN	CAN Up to 1Mbps
Other Interfaces	One (1) 5V GPIO Six (6) Digital Signal Input (DSI) Eleven (11) Pin Programming GPIO UART
Power/PLC Interface	Power Connector (X2) 8-pin Deutsch DMC-M DMC-LP 08-16P
Supported Voltage Ranges	DC Voltage Range: 0-540VDC AC Voltage Range: 0-480VAC
Surge Voltage	Differential (1.2/50us): 2 kV, Z_src = 2 Ohm Common Mode (1.2/50us): 4kV, Z_src = 12 Ohm
Supported Current Range	N/A – current on the power line is not relevant due to the use of a capacitive coupler

ADENEAS Public Workshop 22 February 2023

WP4 – Modular Distributed Power

Advanced Data and power Electrical NEtwork Architectures and Systems

01010100101

ADENEAS

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.

WP4 Objectives

Energy and power management controls for future power architectures and distributed systems

Investigate and test circuit topologies for 540/28Vdc conversion to achieve modular and very high-power density conversion stages.

Demonstrate and characterize controls and hardware performance in a laboratory grid

Development and demonstration of PHM methodologies for modular power systems

ADENEAS WP6 Monthly Progress Meeting - 2021-09-22

© ADENEAS

This slide does not include any export controlled technical data |Created at ART-Ireland | Collins Aerospace Proprietary.

Modular & Distributed Aircraft Power – Controls, Conversion and PHM

Adeneas

- Research focus for future power architectures
 - HVDC primary power localized secondary distribution – cabin systems focus
 - Power conversion topologies and techniques for localized LVDC cabin distribution to achieve modular and very high-power density conversion stages.
 - Power and energy management supervisory controls for reconfigurable systems to optimize power demand
 - PHM techniques to develop predictive analytics for failure detection of passive and active components

WP4.1 – Power and Energy Management for Cabin Systems

Problem statement:

- Power & Energy Management supervisory controls often redeveloped using diverse approaches
- This results in inefficiencies, misalignments, and lack of robustness along the process

Project objectives:

 Develop a generic framework that allows the easy implementation and deployment of PEMS for aircraft

Framework capable of adapting to changes in the network

ADENEAS Public Workshop – 16 February 2022

WP4.2 – Modular Power Conversion

Problem statement:

 Power conversion topologies and techniques for localized HVDC-LVDC cabin distribution to achieve modular and very high-power density conversion stages.

Project objectives:

- Optimized topology for 540 Vdc to 28 Vdc.
- High switching frequency
- Highly integrated passive cooling

Advanced topologies for highdensity power conversion

WP4.3 – PHM Techniques for Power Electronics

- Problem statement:
- Product failure mode and effect analysis & machine learning approaches for predictive analysis of capacitor and other passive and/or active component failure effects

Project objectives:

- Study of physics of failure for key components & benchmark of diagnostic and prognostic methods
- Testing feature extraction, diagnostic, and prognostic algorithms

Physics of failure and feature extraction for prognostic detection

WP4.1 – Power and Energy Management for Cabin Systems

Benefits:

- Scalable and replicable solution across different platforms and use cases.
- Reduction of development times and increased re-usability of artifacts.
- Completed Activities:
 - Simulation validation of control framework complete
 - Library developed of components for loads, storage, local controllers and supervisory controller

Current tasks

- Experimental validation through the use of development controller boards and hardware-in-the-loop emulation of aircraft electrical loads
- Completion of WP4.1 through validation and reporting

WP4.2 – Modular Power Conversion

Benefits:

 Weight saving potential vs. centralized approach

Completed Activities:

Trade-space study completed to downselect suitable candidate topologies

Current tasks

- Detailed design of chosen converter design LLC converter
- Preparation for hardware design, build and test through laboratory validation

Efficiency Breakdown Soft-Power Design Control switching complexity density complexity voltage \bigcirc 2-L: LLC \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 3-L: LLC \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 4-L: LLC \circ \bigcirc 2-L: DAB \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 2-L: AHB \bigcirc \bigcirc \bigcirc

Candidate 3L-LLC Topology

Preliminary Design Optimization

2-L: ZAHB

Trade-Off Study

©ADENEAS

WP4.3 – PHM Techniques for Power Electronics

Benefits:

- Groundwork for development of PHM for modular power systems
- Increase time out service for equipment

Completed Activities:

- Conducted review of existing research and identified candidate component failure case to be studied
- Design and procurement of materials to develop test-bench for materials testing and data capture

Current tasks

- Test bench under construction
- Aging tests to be conducted in coming months to generate training data
- Development of machine learning approaches to provide prognostic detection of failure mechanisms

PHM Testbench under development

©ADENEAS

رہے ہے۔ Adeneas

Modular & Distributed Aircraft Power – Conclusions

- ADENEAS will facilitate future concepts for highly efficient and modular solutions for aircraft power systems
 - Cabin systems provide interesting opportunities to evaluate and certify controls approaches that may have broader impact
 - Modular and highly integrated power electronics will save weight through local conversion and support EWIS optimization for the aircraft
 - PHM techniques will support diagnostics and prognostic capabilities for the electric system to ensure reliable operation of critical systems

Adeneas

ADENEAS Public Workshop 22 February 2023

Presenter: Sana Fateh -Synano

WP5 – Cooling Solutions

Advanced Data and power Electrical NEtwork Architectures and Systems

01010100101

ADENEAS

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.

Contents

- WP5 "Cooling Solutions" objectives
- WP5 "WP 5.3 ADENEAS Nano-fluids R&D objectives"
- WP5 "WP 5.3 Main achievements and technical highlights"
- WP5 "WP 5.3 Single-Phase cooling and EPOS mini-demonstrator next steps"
- WP5 "WP 5.3 Two-Phase boiling Nano-fluids & Nano-fluid deposition results"

Partners involved inWP5

Define architectural designs compatible with MEA aircraft and subsystems (T5.1)

Develop an MPL demonstrator which demonstrates MPL's modularity, scalability and MPL's standardization aspects for implementation in MEA (T5.2)

Demonstrate and quantify the performance improvement of nano-fluids in both singlephase and 2-phase MPL's (T5.3)

Analyse the performance improvement for electric systems as a consequence of MPL systems (T5.4) (just started)

WP5 timeline

Ref	Title	Leader	Due date	Comment
D5.1	Architectural design analyses and trade-off study for 2-phase MPL's in MEA	NLR	M12	Delivered
D5.2	Preliminary MPL evaporator design and electronics interface	NLR	M12	Delivered
D5.3	Preliminary 2-phase MPL demonstrator design	NLR	M12	Delivered
D5.4	Detailed 2-phase MPL evaporator design & electronics interface	NLR	M18	Delivered
D5.5	Detailed 2-phase MPL demonstrator design	NLR	M18	Delivered
D5.6	2-phase MPL demonstrator Test Plan	NLR	M24	Delivered
D5.7	Performance improvement by nano-fluids	Synano	M24	Delivered
D5.8	2-phase MPL demonstrator Test Report	NLR	M30	
D5.9	Performance improvement by nano-fluids: proof of concept	Synano	M30	
D5.10	Performance improvement by nano-fluids: standardisation and safety Document	Synano	M34	
D5.11	Final Report 2-phase MPL demonstrator	NLR	M34	
D5.12	Thermal management trade-study Report	ECMS	M34	

ADENEAS Public Workshop – 16 February 2022

WP 5.3 ADENEAS Nano-fluids R&D objectives

- Main aim: To show effect of nanoparticles on heat transfer improvement in single and two phase cooling systems
- Research questions to be answered:
 - What is the change in heat transfer with and without nanoparticles in single and two phase heat transfer?
 - What are the relevant parameters affecting boiling heat transfer and how are they affected by the presence of nanoparticles?
 - Are nanofluids more effective as boiling heat transfer media or nanoparticle coating on the surface provides a better alternative and why?
 - Are the results repeatable and reproducible?

Adeneas

Main achievements & technical highlights

WP5.3 Main achievements & technical highlights

- Synthesis of stable nanofluids/refrigerants and nanoparticle coatings
- Single-phase cooling test facility
 - Tests with nano-fluids performed and reported
 - Tests with nanoparticle deposition performed and reported
- Two-phase pool boiling test facility
 - Tests with nano-fluids performed and reported
 - Tests with nanoparticle deposition performed and reported

Adeneas

Nano-refrigerant samples & deposition of F-G as result of ultrasonication

Two-phase boiling test set-up ADENEAS EB Meeting 08-11-2022

Introduction Nanofluids

- Adeneas
- Nanofluids are suspensions of nanoparticles (metal, metal oxide, carbon) in base-fluids like water, glycol, refrigerants and oils.
 - Nanofluids created to improve the thermal conductivity of traditional heat transfer media.
 - In boiling heat transfer, nanoparticles interact with bubbles and form highly conductive porous layer on the heater surface.
- For ADENEAS project, SYN has developed water and acetone based nanofluids/ nanocoatings using Alumina nanoparticles.
 - Average diameter of Dp = 115 nm
 - Zeta potential ζ = 46 mV, confirming the stability of the nanofluid.

Alumina nanoparticles size distribution in water-based 0.1% wt nanofluid

ADENEAS Public Workshop – 22 February 2023

Single phase cooling system

<u>____</u>

Single phase cooling system- results

Nanoparticle depositions give better results compared to nanofluids.

- Improvement seen with depositions. Higher the power, more the temperature reduction. ~2.5°C reduction in surface temperatures observed for 125W (heat flux of 13.27 W/cm²)
- More depositions create thermal resistance and makes heat transfer worse leading to similar or slightly better performance than base surface

- Way forward
 - Further nanoparticle deposition tests with different particle types and sizes.
 - Surface study is also needed before and after making depositions.

● ↓ / 一 参 ADENEAS

EPOS mini-demonstrator

- The temperature of the stator needs to be maintained within acceptable limits otherwise the efficiency is deteriorated.
- Nanoparticles will be used to improve heat transfer of single phase cooling system employed in the EPOS stator and compare it with the results of base fluid tests

Demonstrator design

- Quarter of the cylinder of the stator was extracted and redesigned to the planar one (3 pieces manufactured)
- Two sections to determine coating method at Synano
- Third section tested with base fluid to get baseline data by EVEKTOR and sent to SYN for coating
- At EVE, the same tests will be repeated with the new surface treatment
- The result can be extrapolated to the whole assembly of stator heat exchanger and this representation of the system will be shown as a demonstrator for EU deliverables
- Parts under manufacturing

Two phase MPL cooling system with nano-fluids

Objectives:

- To show improvement with nanoparticles in two phase heat transfer performance
 - Pool boiling tests with alumina nanofluids
 - Pool boiling tests with nanoparticle coatings
- Implement the best option on a flow boiling demonstrator (with 2-phase MPL)

Adeneas

ADENEAS Public Workshop – 22 February 2023

Pool boiling- nanofluids

Pool boiling- nano-depositions

- Low conc. deposition preferred, high conc deteriorates heat transfer
- Evaporation depositions more homogeneous than boiling
- With (evaporative) deposition using acetone nanofluid, wall superheat reduced by ~9°C.

- Multiple runs show reduced performance, more robust depositions methods needed
- Modifications to the apparatus might be required so that the setup reaches critical heat flux point

Flow boiling setup

- Flow boiling setup will represent 2-phase MPL demonstrator at NLR
- Aim: To show nanoparticle depositions can improve boiling heat transfer in flow boiling conditions
- Schematic and setup requirements are done

Outlet vapor fraction= 0.5 (to avoid dryouts in the channels) Maximum heat flux = 25W/cm²

SPECIFICATIONS	REQUIREMENTS
Fluid	R1233zd(E)
Saturation temperature	$70^{\circ}C$
Saturation pressure	5.1 bar
Temperature at evaporator inlet	$70^{\circ}C$
Temperature at the condenser outlet	$50^{\circ}C$
Maximum vapor fraction at the evaporator outlet	0.5

Flow boiling setup- challenges and next steps

- Design of cooling plate to study the surface and make depositions non-destructively
- Maintaining proper seal and pressure conditions during operation
- Starting procedure
- Draining and cleaning the system without causing pressure loss
- Avoiding dry-outs in evaporator
- Saturated liquid entering into the channels to ensure uniform flow in all channels
- Ensuring proper sealing when dissembling and assembling the setup after depositions are made

Next steps:

- Finalising deposition method of nano-particles in the mini-channels;
- Finalising specifications of other components of the setup;
- Building the setup and performing test runs with pure fluids to validate the setup;
- Experiments to study the effect of nanoparticle depositions on heat transfer performance

Adeneas

ADENEAS Public Workshop 22nd February 2023

WP6: Architectures and Topologies

Advanced Data and power Electrical NEtwork Architectures and Systems

01010100101

ADENEAS

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.

Presenters: Diarmaid Hogan – CA Asterios Souftas -FE

WP6 Architectures and Topologies

Develop a system exploration toolset for distributed modular power systems

Analyze and optimize power system architectures

Adeneas

Develop methods and tools to optimize hybrid data networks with wireless communication and PLC

Develop Novel Conductor Concepts to increase data network capacity and improve EMC

ADENEAS Public Workshop – 16 February 2022

©ADENEAS

Adeneas

Power System Architecture Exploration – WP6.1 / 6.2

Objective:

- Automate design of complex aircraft power systems
- Satisfy design requirements, e.g. reliability redundancy
- Reduce system mass
- Enable complex system design for highly reconfigurable systems

Approach:

- Development and extension of design space exploration tool for next generation aircraft power systems – HVDC, Distributed, Modular
- Enhance in-house toolsets, solvers, libraries, and methods to provide rapid comprehensive exploration of architectural design spaces
- Utilize system validation capabilities from other EU programs such as Clean Sky - MISSION to evaluate outputs against key metrics such as system weight

Power system architecture exploration – WP6.1 / 6.2

- Status: Model of aircraft electric system, considering increased distribution and load zones
 - Evaluation of in-house tools for system architecture exploration
 - Optimal sizing of candidate system architectures
- Outlook: Use-case extension, increased complexity and additional requirements
 - Model extension to consider additional systems and components
 - Extension to full aircraft and evaluation to lower sub-systems
 - Evaluation of flight operating phases and reliability

©ADENEAS

رونی کار است Adeneas

Data Network – T6.3 Architecture and Topology Integration Objectives and Approach

Objective

- Find a way to deal with complexity
- Apply for automated design + optimization

Challenges

- Complexity (high numbers, multidisciplinary, integration of several architectures)
- Will AI deliver benefit over heuristic approach?

Results

- Reference cases representing aircrafts
 - Different types
 - Input ITU-R inventory (aggregated level)
 - Scaled up and down other aircrafts

- Extended with (estimated) data needed for the developments (DAL, data rate, ...) based upon detailed design EWIS background
- Same list as last year, but the list got bigger

																															Ban Hayber St. Marr
412		5 1 84	Cere ADE	1044																											
1.0						a	12101-001	1000	A				Y					1.04	10.000		10	1001	1.000	# 14						A	1.00
	Constant of Fact Andrew Secondary	-		-	-	Auto Au			The Party States	100	192	-	-	-	-	- New York	Ter Terror	÷	-	-				. 1000	2.22		1160	a - a	-		101.000
105-	AND DEPENDENCE IN COMPLEX	April 1	- 748	262.6	3.4.70		7.67.384	78.74	111-201 (America (3) 10-120	100.00	20.41	11100		5.600	14.04.04	74044	1404		14	-	79. Jan		Terms .	10.00		2017-04		100-001-01	24.12		THEFTOP DESIGN
- 200		1000	- 22	- 222					or supervised of the last	Sector det		14,000		222		1000			2.1				THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE OWNER OWNE OWNER	- 22				Contraction of a	2 F		
- 10 C	many long water and dr hindred.	10000.00		and a second					141 - Work-Benningth & Mrs. 191	I manufacture	100.000	1.000		250	The second second	1000			10.00	- · · ·	10.000		Colors .	10.00		10010-000		a later or second or light	4		Transmission and the second
100.0	man the Part of a second -	Access	100	1000			1 1 1 1 1 mil	100110	THE CONTRACTOR AND A DESCRIPTION	Charles and	1001.000	11000		4.601	10.000	interior in		- 61	14	-			in the second se	10.00		100-1-0.0		a barron annon onto	6a - 4		And Property and DOLLARS
100-4	mile the root of a shares.	10.00		1000	10.00		 maximiz 	0.0116	1.84 . 851.8. 8. 8. 8. 8. 8. 1. 8.	county have	1071.1084	2.000		4.661	100.000	indextant.	-		34 1	-	he into			10.00		0011-00		Plantmanen out	54 5		Coprocession and procession
POR-	JARS LOB PORT INC. MANAGEMENT			1.1							ALC: 14	1.46.0		4.541	100.00	interest of the second se	100.0		14				in the second se		1.1.1	10111-005		English and the second			
140-	Mine 200 PORTING, &CANCEL-IN	April # 1.61	1000	20.04			1 1 4 6 M Mar	246.00			1000.04	LMN .		0.05	in contact	(minutes)	100.0		14 1	-			in the second se	-		3804-00		END-0-8058-104	51 . 5		NROVEMP ACCOUNT.
100-4	and the state of a borrow of	3825436	1000	1000			 1.100 Mol 	0.000	171-ROD (Automotic Science)	10.0	4.55.501			0.05	and applied.	(manual)	100.0	- A.I.	14	-			THREE IS NOT	10.00	1964	300140		Electrony and			NUMBER OF STREET
100-	state and the real of a Palatica, to	10014-0.	1000	and an				0.0116	press hape constrained in 244,000	10.0	A18.141			1.961	10.00	in the second se			. 64				Longe La		1000	10107-628		DOCTORIONAL	24		TREPARENT, PLAT
100-	AND A DOMESTIC COLUMN ADDRESS.	2014.01		A 11-1			1	20110	(b) - Fight plantman, (b) - Photo:					4.861	10.000	and the second s							1000		-	ALC: 1 4 4		DOC-SERVER NEE	24 2		1000 + 6368 - 610 (HL 1 - 1
100-1	And the state of the second	10018-14	100	and the second second			7 7 867 884	-0.6116	TYL REPORTED IN THE REPORT	10 m M	613.011			6.565	10.00	100 March 1	1004		14	-	Fig. 1976		10000	10.00	1000	301140		Decomposition and	24 2		CONTRACTOR OF ANY
100-	AND A STAR POINT			-					111. Note 1 Street of A.A.A.S.		Are			1.65	10.101404	Transfer 1			. 88				10000		-	10000		A Reconciliant and			
100-				-										1.00		-			10.000										22. 2		
100	and the second of the second of		- 22	1000					Tel All the second second second			1.000		222 -					- C - C	-				- 22		1000		A Party report of the	22 2		Concernance and the second
	the part of the second second second								Tel address and the set	- 20 - 20 - 20				2.00															27 - A		
100	and play have a subserve to								The second second second second			1.000		100		- Andrews			- C - C				Contract of Contra			000104			22 2		
1222	and the rest of a second			200				22.20	The second second second second second			1000		122		1000			- C	-	C		1000	- 22				Contraction of the local sector	12 6		
122.2				20.00				1111				2.25		200					G					- 22				Contraction of the	6. 6		
128C -	the second se	100000					1.	100	Los and a second second second	100.00	100	1000		201		1000			12	-			1000	- 22				Contraction of the	60 E		0000000000000000
122-	and has shown in a statistically			- 22				10.00	the second second second	100 00				200		-		- 21		-	C 22		the second se			2011/1		a second s	E 4		- Contraction of the second
100.0	and the start what blanch	AND M.	1000	1000						Mar and	411.41	1.000		1.80		Colorado -			- C - C				Long Long		1.000	1011.44		I Mariaditation and	6 - 6		Transmission and the local
		Andrew State	-									in many																Address of the local data	6 -		

- Design automation optimization
 - Weight and costs are optimization space, reliability/safety is not negotiable
 - Extension of EWIS Optimization Framework (EOFw)

- AI: Automatic gateway positioning
 - Method 1- K-means: Based upon shortest average transfer distance
 - Method 2 DBSCAN: Based upon node density
 - Method 3 Agent Based Framework: Autonomous dynamic re-allocating of resources equipped with Machine Learning features
 - Methods currently combined in a workflow

ADENEAS Public Workshop – 22 February 2023

Data Network – T6.3 Architecture and Topology Integration Objectives and Approach

- Inclusion of PLC just started
- Design strategies for hybrid data network
 - E.g. short distances>data cable; cable supplied power>PLC; wireless power supply>wireless communication; ...
 - Key question to become answered is if AI will deliver benefit over heuristic approach

Novel Conductor Concepts (NCC)

- Objective: Reduce weight and raise reliability
- 5 concepts defined
- 2 rejected limited topologies
- I rejected technical limitation
- 2 selected
 - Bifilar wiring concept (plc-tec, WP3)
 - Shielding transparencies (passenger windows)

- Shielding windows shields aircraft wireless network form radio altimeter
- SE >20 dB expected
- Existing technology
- Preliminary models defined (NLR), verification test scheduled

Advanced Data and power Electrical NEtwork Architectures and Systems

Thank you! Questions?

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.
ADENEAS Public Workshop 22 February 2023

WP7: Technology impact Evaluation, Assessment & Optimization

Advanced Data and power Electrical NEtwork Architectures and Systems

01010100101

ADENEAS

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.

Presenter: Roland Furmanek Evektor, spol. s r.o.

WP7 objectives

T7.1: Technology Integration Assessment and Optimization

Testing, optimization and performance evaluation of the solutions as operated stand-alone systems or aggregates (complex interaction with other systems) in relevant environment (demonstrators).

T7.2: Economic Impact and Meeting H2050 Targets

Review economic benefits of the solutions, outline possible challenges with their future commercialization and analyze impact on aircraft systems with respect to H2050 targets.

T7.3: Standardisation and Technology Maturity Assessment

Define and review final TRLs of the ADENEAS technologies. Discuss integration and certification requirements and identify possible tech. challenges that may limit progression to higher TRLs (i.e. maintainability, repairability, etc.)

WP7: General approach

S

D

WP 1

©ADENEAS

T7.1: Technology Integration Assessment and Optimization

- Demonstrators (WP 2-6)
 - PLC Electromagnetic Compatibility
 - PLC network configuration tool
 - Two-phase mechanically pumped loop integrated with power module
 - Cooling additives for two-phase cooling
 - Cooling additives for single-phase cooling
 - Cooling plate for two-phase cooling of HVDC converter
 - Cooling plate for liquid and two-phase cooling of EPOS motor
 - Diversity mechanisms to enhance (TSCH) channel access technology

©ADENEAS

- Diversity mechanisms The digital version of the (analog) hardware
- Shielding Transparencies
- Complex demonstrators (WP 2-7)
 - PLC+NCC (bifilar wiring)
 - PLC+Cabin nano-grid power architecture
 - PLC Power system control (EPOS flying demonstrator)

Test Bench

Adeneas

Ground Based Demonstrator (GBD)

T7.1: Technology Integration Assessment and Optimization

- PLC integrated with Novel Conductor Concept (bifilar wiring)
 - PLC performance on the bifilar wiring architecture
 - Test goal
 - Establish network performance, latency, and message loss
- PLC integrated with Cabin Nano-Grid power architecture
 - Test variants
 - High-voltage (540VDC)
 - Low-voltage (28VDC)
 - Test goal
 - Define integration potential and performance impact on integrated solutions

Ground Based Demonstrator (GBD)

Flying Demonstrator (FD)

T7.1: Technology Integration Assessment and Optimization

EPOS + PLC/ complex demonstrator

- Test variants:
 - In-Flight
 - 380 VDC: self-generated comm. traffic
 - 300 VAC 3-phase: self-generated comm. traffic
 - On-ground
 - 380 VDC: self-generated comm. traffic + BMS-INV CAN traffic
 - 300 VAC 3-phase: self-generated comm. Traffic
- Test goal
 - Test functionality and performance of the PLC solution in relevant environment

Main goals:

• Put ADENEAS outcomes into context of FP2050 goals (ACARE/SRIA: "FlightPath 2050")

FlightPath 2050 goals:

- 75% reduction in CO2 emissions (PAX/km)
- 90% reduction in NOx emissions (PAX/km)
- Emissions reduction via targeted weight reduction
 - Innovative EWIS systems
 - 10%/15% reduction of EWIS power/signal cables
 - 40% reduction of the cabin and power distribution network equipment
 - 2-phase MPL with nano-fluid additives
 - 30% weight reduction
 - PLC (PLUS) systems implementation
 - 36% reduction in the number of wired links/connectors (TAUPE)
 - EXAMPLE
 - Expected Total weight savings > 450 kg for medium and large aircraft (Airbus A220)

Adeneas

- Flight Performance Calculator
 - Calculate emission reduction and weight saving
- Input data
 - Structural data
 - Wing Span, Weight...
 - Operational performance
 - Take-off distance, Stall Speed...
 - Propulsion System
 - Engine Power, Prop RPM...
 - Airfield
 - Runway type, Fuel Price...
- Applied Methodologies
 - Semi-empirical methods
 - Based on classical aerodynamic approach

- Considered Scenarios
 - Flight profile
 - Taxi, Take-off, Climb, Cruise, Descent, and Landing, Take-off
 - Aircraft type
 - CS23A (EPOS, Cesna 172,...)
 - CS23B (EV-55, Pilatus PC-24,...)
 - CS25 (A320, Fokker 70 or 100,...)
- Output
 - Energy required, flight profile, CO2 emissions

T7.2: Economic Impact and Meeting H2050 Targets

Flight Performance Calculator

- Additional data
 - Time to climb
 - Characteristic Assessment
 - Fuel/energy cost pre person
 - Cruise and Endurance performance at multiple power settings

من کر میں Adeneas

T7.3: Standardisation and Technology Maturity Assessment

Adeneas

WP7.4 Main achievements and technical highlights

Standardisation and Technology Maturity Assessment

- Tailored TRL levels solutions for
 - Electrical Hardware
 - Thermal Hardware
 - Network Hardware
 - Protocols and Software
- The adequate TRL levels are derived for specific solutions from
 - H2020
 - EASA
 - NASA

Advanced Data and power Electrical NEtwork Architectures and Systems

Thank you! Questions?

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.

Advanced Data and power Electrical NEtwork Architectures and Systems

<u>Start date</u>: 01/02/2021 - <u>End date</u>: 31/01/2024 <u>Total EC funding</u>: 4,018,012.75 EUR

Beneficiaries:

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006728. This document and its contents remain the property of the beneficiaries of the ADENEAS Consortium and may not be distributed or reproduced without the express written approval of the ADENEAS Coordinator.